Asymptotic Behaviour of Solutions
of Two-Dimensional Linear Differential

Systems with Deviating Arguments

R. Koplatadze, N. Partsvania, and I. P. Stavroulakis

Abstract. Sufficient conditions are established for the oscillation of proper
solutions of the system

w1 (t) = p(t)ua(o(?)),
up(t) = —q(tyur (7(2)),
where p, g : Ry — R, are locally summable functions, while 7 and o : R, —

R, are continuous and continuously differentiable functions, respectively, and
lim 7(t) = 400, lim o(t) = +o0.
t—oo t—+o0

1 Statement of the Problem and the Formu-
lation of the Main Results

Consider the differential system

u1(t) = p(t)ua(o(t)),
uy(t) = —q(B)us(7(2)),
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where p, ¢ : R+ — Ry are locally summable functions, 7 : Ry — R, is a con-
tinuous function, and o : Ry — Ry is a continuously differentiable function.
Throughout the paper we will assume that

! 2 _ : —
o'(t) >0 for t€ Ry, t_l}_l_moo?'(t) = 400, s—lﬂnoo a(t) = +oo.

In the present paper, new sufficient conditions are established for the oscil-
lation of system (1.1) (see Definition 1.3 below) as well as conditions for system
(1.1) to have at least one proper solution. Analogous problems for second order
ordinary differential equations and systems and for higher order functional differ-
ential equations are studied in [1, 2, 4, 9-12] and [6], respectively. For second
order differential equations with deviating arguments the problem of oscillation is
investigated in [5, 7, 8, 13] (see also the references therein).

Definition 1.1 Let tg € Ry and ap = min{tigltf 7(t); ti§1tf o(t)}. A continuous
- ZL0 Zi0

vector function (u1,uz) defined on [ag, +00) is said to be a proper solution of system
(1.1) in [to, +00) if it is absolutely continuous on each finite segment contained in
[to, +00), satisfies (1.1) almost everywhere on [tg,+00), and sup {|u1(s)|+ |ua(s)] :
s>t} >0 fort > 1.

Definition 1.2 A proper solution (uy,us) of system (1.1) is said to be oscillatory
if both u; and us have sequences of zeros tending to infinity; otherwise it is said
to be nonoscillatory.

Definition 1.3 System (1.1) is said to be oscillatory if every its proper solution
is oscillatory.

Let # : Ry — R, be a continuously differentiable function satisfying the
following conditions

p(t) >0 for t € Ry, t_lé_n'_'loo p(t) = +oo. (1.2)

In the sequel, we will use the notation

i
h(t) = f pls)ds for £ >0, (1.3)
0

1 for 7(t) > u(t)
p(t) = | h(r(t))
h(u(t))

for T(t) < p(t) (14
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t +oo
9(6,%) = A Au(e) [puNK ) [ a@p@n (@) dgds (1)
1 s for t>1, A€ (0,1),

g«(A) = ltim+inf g(¢,A), g*(A) = limsup g(t,\) for X € (0,1). (1.6)
o0 t—+oo

+oo
It is easy to show that if [ A(7(t))g(t)dt < +oo, then system (1.1) has a
proper nonoscillatory solution. Therefore it will be assumed that

+co
/ h(7(t))q(t) dt = +oo. (1.7)
Moreover, below we will assume that
+oo
limsup A(u(t)) f q(s)p(s)ds < +oo. (1.8)
t—+co

t
Note that condition (1.8) is not an essential restriction in the sense that if
limsup h(u(t))/h(t) < +co and limsup A(u(t)) +f°°q(s)p(s) ds = 400, then, as
1’:';_1)3+ c;,oasy to prove, system (1.1) is :);;floatory. t
Remark 1.1 Without loss of generality it will be assumed that
p(t) #0 for t€[0,1], and p(1) >0, (1.9)

since the alternation of coefficients of the system in a finite interval has no influ-
ence on oscillatory properties of that system.

Theorem 1.1 Let
: lifl h(t) = +o0, (1.10)

and let there exist a continuously differentiable function u: Ry — Ry such that
conditions (1.2), (1.8) are fulfilled and for sufficiently large t,

o(u(t)) <t. (1.11)

If, moreover, for some X € (0,1),

2
) > min{% = 4(1): N 4(;%(15),\) } (1.12)
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where h(t) and g*()\) are defined by (1.3) and (1.4)—(1.6), respectively, and

o (t)
o= limsup (u(t))/ ((o(®) + [ a(s)h(s)ds),
= 0 (1.13)

p(t) for p(t) <t
t for u(t) >t

m@={
then system (1.1) is oscillatory.
Corollary 1.1 Let condition (1.10) hold, and let there exist a continuously differ-

entiable function u : Ry — Ry such that conditions (1.2), (1.8), (1.11) are fulfilled
and u(t) < t for sufficiently large t. If, moreover, for some X € (0,1),

” ' A=22 (1+A)? }
g ()\)>mm{4/\(1_/\),4)\(1_)\) , (1.14)
where g*(\) is defined by (1.4)—(1.6), then system (1.1) is oscillatory.
Theorem 1.2 Let conditions (1.2), (1.8), (1.10), (1.11) hold, and let
1
lim (1 —\)g* = .
Jim (1-X)g"() > 7, (1.15)

where g*(\) is defined by (1.4)—(1.6). Then system (1.1) is oscillatory.

Theorem 1.3 Let conditions (1.2), (1.8), (1.10), (1.11) be fulfilled, and let for

some g € (0,1),
1

dro(1—Ag)’
where g.(Xo) is defined by (1.4)—(1.6). Then system (1.1) is oscillatory.

9x(Ao) > (1.16)

Corollary 1.2 If conditions (1.2), (1.8), (1.10), (1.11) are fulfilled and for some
A0 € (0: }-):

+0co

juninf W00 AP ds > g, (LD

where h(t) and p(t) are defined by (1.3) and (1.4), then system (1.1) is oscillatory.
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Corollary 1.8 If conditions (1.2), (1.8), (1.10), (1.11) hold and for some \g €
(0,1),

t
1
T —Xo 1+29 -
liminf A7) [ als)o(s)h™ 0 (u(s)) ds > o (1.18)
1
where h(t) and p(t) are defined by (1.3) and (1.4), then system (1.1) is oscillatory.

Theorem 1.4 Let condition (1.10) be fulfilled and let for some A € (0, 1),

t +co
limsup A=(2) f p(s) f Q€PN (€)) deds < 1, (1.19)

t—+
= 0 a(s)

where h(t) is defined by (1.3). Then system (1.1) has a proper nonoscillatory
solution.

Now consider the second order linear differential equation
u’(t) + q(t)u(r(2)) = 0, (1.20)

where ¢ : R, — R, is a locally summable function, and 7 : Ry — R, is a
continuous function such that ; liﬁ 7(t) = 4+00. For equation (1.20), Theorem 1.3
—TCQ

and Corollaries 1.2 and 1.3 have the following form.

Theorem 1.3’ Let

T(t) > at for t € R, (1.21)
and let for some X € (0,1),
¢ +oo
limnf £ 1] / Eq(€) deds > m, (1.22)
5

where a € (0,+00). Then equation (1.20) is oscillatory.
Corollary 1.2 If condition (1.21) holds and for some X € (0,1),

+o0

limi inf -2 f s*q(s) ds >

t—+oo 53)
t

1
da(l—-N)’

where a € (0,+00), then equation (1.20) is oscillatory.
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Corollary 1.3 If condition (1.21) is fulfilled and for some X € (0,1),

t

1

limnf ¢~ f S g(s)ds > ., (1.24)
1

where o € (0,+00), then equation (1.20) is oscillatory.

Remark 1.2 For the case where equation (1.20) is without delay (i.e, T(t) = t;
o = 1) Corollaries 1.2 and 1.3 lead to the results by Nehari [12] and Lomtatidze
[9], respectively. So, Theorem 1.8 is important even for equations without de-
lay, since the above mentioned results by Nehari and Lomtatidze are particular
cases of that theorem. Moreover, it is possible to construct ezamples showing that
conditions (1.23) and (1.24) are violated but condition (1.22) is satisfied.

2 Auxiliary Statements

Lemma 2.1 Let condition (1.10) be fulfilled, ¢(t) # 0 in any neighbourhood of
+o0, and let (ui(t),us(t)) be a proper nonoscillatory solution of system (1.1).
Then there exists t, € Ry such that

ui(t)ua(t) > 0 for t > .. (2.1)
For the proof of Lemma 2.1 see [8, Lemma 2.1].

Lemma 2.2 Let condition (1.10) hold, q(t) # 0 in any neighbourhood of +00, and
let (u1(t),us2(t)) be a proper nonoscillatory solution of system (1.1). Then there
erists tg € Ry such that either

h(t)us(o(t)) —ui(t) =0 for t > tg (2.2}

or

h(t)us(o(t)) —ui(t) <0 for t > o, (2.3)
where h(t) is defined by (1.3).
Proof By Lemma 2.1 there exists t» € Ry such that inequality (2.1) holds for

t > t,. Without loss of generality we can assume that u;(t) > 0 and u2(t) > 0 for
t > t,. Therefore, in view of (1.1), we find

(A(B)ua(o(t)) —wa(t))' = p()ua(o(t)) + h(t)uz(o(t))o’ () —w(f) =
= h(t)us(a(t))o'(t) <0 for t > ty,
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where t; > ¢, is a sufficiently large number. Consequently, since h(t)us(o(t))—u;(t)
Is a nonincreasing function, there exists to > ¢; such that either condition (2.2) or
condition (2.3) is fulfilled. O

Lemma 2.3 If conditions (1.2), (1.8)-(1.10) are fulfilled, then for any ) € 10,:1);
+co
limsup h=(u(t)) [ a(s)o(s)i(i(s)) ds < +oo (2.4)
t—+co
t

and

| PEENA2 ()i ) [ a@pOR N u(e)) deds < 00, (25
0 0

where h(t) and p(t) are defined by (1.3) and (1.4).

Proof First we show the validity of (2.4). Due to (1.8) there exist M > 0 and
to € R4 such that

+o00
R(u(t)) [ a(s)p(s)ds < M for t > to. (2.6)
t
Note that according to (2.6) for any A € (0, 1),

+0o0
[ als)p(e)(u(s)) ds < +oo.

Thus, by (1.10) and (2.6), we have

+c0
W u(e) [ a(s)p(RAls)) ds = ~h1A () x

+co +o0o +c0
x [ (s d [ ateo(e)de = niut)) [ als)ols)ds +
t s t

+co +o0
M) [ PN w(s) ) [ a@ole) deds <

+co
UDue to (1.8), it is obvious that for any X € (0,1), 1_13-1&100 Mut)) [ a(s)p(s)ds = 0.
¢
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+oo

< MAAME(u(e) [ pl(s))R2(u(s)) i () ds =
t
A M
— = > 1p.
M+1—)\M T for t > tp
Consequently inequality (2.4) is valid.
Now show the validity of (2.5). Taking into account conditions (1.10), (2.6)
and Remark 1.1, we get

+co =

[ P25 s) [ a€1p(©n*u(g)) d ds =
0

1
+00

=~ [ P2 K E) [ B d [ aerely) deads =
0 3

i

+o0 +oco
= [ PR ) [ a©)ple) deds+

+co

+oo
() [ a@p(s)ds [ plule)H (I (w(s)) ds + (1+X) x
0

1

+oo s “+oo
x [ PN (s) [ PuEWER O [ alr)ole) dérdgds <
1 0 £

1+ NM

ST P B

+oo
< WO w) [ s)p(e)ds+
0

Therefore inequality (2.5) is fulfilled. O

Lemma 2.4 Let conditions (1.8) and (1.10) be fulfilled. Then for any A € (0,1)
the function g(t,X), which is defined by (1.5), admits the representation

+co

9(t,2) = BN (u(t) [ pluls)h~2(w(e))k (5) x

£

x [ a(©p(@h*(u(e)) e ds + O(h™(u(r))), 2.7
0

where u(t) satisfies (1.2), and h(t), p(t) are given by (1.3), (1.4).
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Proof First we show that
t
Jim h7u0) [ a(@p(s)hHHu(s) ds = (28)
0

Let £ be an arbitrary positive number. By virtue of (1.8), we can choose 7' > 0
such that

+oo
[ as)pen (u(s)ds <. (29)
T

On the other hand,
i
A=) [ a(e)p(s)hHu(s) ds =
0
T t
= K(u(0) [ a(s)p( )+ (s ds + b7 () [ a(s)o(s)h*(u(s)) ds <
’ T +ooT
< BN u(®) [ a(@)p(eh  wls)) ds + [ als)o(s)u(s)) ds.
0 I
Hence, by (1.2), (1.10) and (2.9), we obtain
limsup A~ (u(®)) [ a(9)p(s)hH+((s) ds <
t——+o0 4

T
<limsuph™(u(®)) [ a(5)p(I(u(s)) ds + = .
0

Therefore, taking into account the arbitrariness of &, the last inequality yields
(2.8).
In view of (1.8) and (2.8), for any A € (0,1) we have

t +o0
0(t,%) = k(D) [ p(sNi(s) [ a©)p(@R ule) dgds =

¢ +00 £
= K ut) [P () [hH(u(e)d [ d€)pEh u(er) der ds =
1 s 0
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=~ u(t) [ PN OB W) [ PR (u(e)) g ds +
1 0

i

+co
+hAu) [P (s) [ P O u(e) x

1

€
] a(E)p(E)R N (u(Er)) de dE do = h™(u(t))
] h((s)) d ] B (O (u(E)) f a(E)p(EDRH () der d +
t +oo
) [P () [ P@) O u(E)) x
1 s

£
x [ a€)p(eOn ™ () dex d ds = W (u() x
0

+co

x [ p(u) 2 uls) [ a€)p(OTu(€)) dg ds ~ AR (u(e),
0

t

where

+oo g
= h(u(D) [ () N 2(uls) [ d©p(ER™(u(g)) deds,
1 0

and due to (2.5) (see Lemma. 2.3), A < +o00. Consequently (2.7) is valid. O

Lemma 2.5 For any A, A\g € (0,1) (A # Xg) the following representation

t
9(£,A) = g(t, 20) — 2(X = Ao)h ™ (1u(2)) f # (s)p(p(s)) WA ((3))g (s, Ao) ds —
1
~(h= 201 = do ~ DA((8)
x [ W(s)p(u(s) / EP(E)I2(WE)9(E, M) deds (210
1

is valid, where h(t) and g(t,\) are defined by (1.3) and (1.4), (1.5), and u(t)
satisfies (1.2).
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Proof For any A, Ag € (0,1) we have
4 +oo
9(t:A) = A= (u(1)) f p(p()) (s) f a(E)p(OP(1(€)) dEds = —h™(u(2)) x
{ ' +oo ’ o0
* [N [ Rowend [ ateopenn®(ue) deds =
1 $ 2

t +oo
= K u) [ p(u(s)i (I (u(s)) [ alple)n (u(e)) d ds +
1 s

i

+oo
=20 ) [ ()W (6) [ B0 (ue)p(ou@)) i (€)
1 s
< [ aep(n(uier)) e deds =
£
=h ) [ R d [ W©Opu©) [ a@pEr () de ds +
1 1 £

t +o0 ¢
O XA @tt) [ (Ep(u(s) [ o) d [ wEp(ute) x
1 s 1

+o0

% ./ q(&2)p(E2)P™ (u(E2)) déz dér ds =
&

+00

= h70(u(®) [ 1 (@p(us) [ a©p©r(ule) deds -
1 t ) s
== 20)h™(u(®) [ P O u(s) [ 1 @) x
1 1

+co

% f g(&1)p(€1)R™ (u(é1)) de:1 de ds —
3

== ™ ult) [ Pl (W (u(s)) [ W (©)p((8))
1 1
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+co
x [ a€p€)r* (u() dadgds — (A= 0)(r = do = DA™ (u(t)) x
‘ i +oo
x [ pla(eNi(s) [ B0 2(u(©)p(u(©)H (€) x
£ l ~+-0<::S
x [ p(ue)'(@) [ alep(Eh () dezdés dgds =
1 &1

= 9(t,20) — 200~ M)A (u(®)) [ P(u() ()R> (1(s))g(s, Aa) ds —

—(A = 20)(A = Ao — DA™ (u(?)) x
+co

x [ p(s)i(s) [ PO R Hu(E)(E No) de d.
1

S

Therefore (2.10) is valid. O

Lemma 2.6 For any A, Ao € (0,1) (X # Ao) the following representation
+00

9(t, ) = g(t, M) + 2(X = Ao A (u(2)) / 1 (s)p(p(8))h 2 (u(s))g(s, Mo) ds —
t

~(A=20) (A= Do+ DANu(@) [ W(o)p(ls)A~2(u(s)) x

x [ (ORI (€)g(€ M) deds + O (u(®)  (211)
1

is valid, where h(t) and g(t,)\) are defined by (1.3) and (1.4), (1.5), and u(t)
satisfies (1.2).

Lemma 2.6 can be proved analogously to Lemma 2.5 if we take into consider-
ation Lemma 2.4.

Lemma 2.7 Let conditions (1.2), (1.8) and (1.10) hold. Then g«(A), g*(A) €
C((0,1))?. Moreover,

Jim Ag"() = Jlim (1-2g"(), (212

2) By C((a, b)) we denote the set of continuous functions defined on (a, b).
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Jim Agi(A) = lim (1-A)g.(X), (2.13)

and for any Ao € (0,1),
Jm (1= X)g™(A) < Ao(1 - Ao)g™ (M), (2.14)
JHm (1= A)gx(A) = Ao(1 = Ao)g«(Xo), (2.15)

where g«(A), g%(A) are defined by (1.4)—(1.6). _
Proof First we show that g*(A\) € C((0,1)). For any A9 € (0,1) we have
g% (Ao) < +o0. (2.16)

Indeed, according to conditions (1.2), (1.8), (1.10) and Lemma 2.3, condition (2.4)
is satisfied for any A € (0, 1). Thus there exist a positive number v()\) and t,, € R,
such that for any g € (0,1),

+oo
A% (1)) f a(8)p(s)h™ (u(s)) ds < 7(Ag) for > t,.
t
Then

g(t, 2o) = B2 (u(?)) f p(u(s))i (s) / q(€)p(E)R*°(u(g)) dEds <
1 s

t

<00 u(t) [ P O ) ds < 2D for 121,
1

Therefore (2.16) is valid.
Let Ag € (0,1) and let € be a positive number. Choose ty € R, such that

9(t, A0) < g*(Ao) + & for t > tq. (2.17)
By (1.10) and (2.17), from (2.10) (see Lemma 2.5) we find
9" (M) £ g7 (A0) + 2|2 = Xo|(g"(Ro) +¢) e A= (u(t)) x
¢

X /#’(S)p(u(S))hA"l(#(S))ds +1A = 2ol ]A = Ao — 1|(g"(Ro) +) x

t “+co
xlimsup A () _/ 1 (s)p(u(s)) f 1 (E)p(r(€))h2(u(€)) déds =

IA = Dol [A = Ao

X(1=2X) = (9"(h0) +e). (2.18)

=500 + 222 (g (0) +.0) 4
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Analogously to this we can show that

() 200~ 22220

_[A=20l|A = Ao —1]
DY)

Due to (2.16), (2.18) and (2.19), it is clear that g*(X) € C((0,1)).
On the other hand, in view of the arbitrariness of e, (2.18) implies

g" (o) +¢) —

(g*(No) +&). (2.19)

hrrisun (L=X)g"(A) £ Xo(1 = X)g"(Ro)-

Since the last inequality is satisfied for any Ag € (0,1), it is evident that there
exists Aliz? (1 = X)g*(\). Consequently (2.14) is fulfilled for any Ao € (0,1).

Now we show the validity of (2.12). By (1.10) and (2.17), from (2.11) (see
Lemma 2.6) we get

g" () = limsup |g(t, ) + 2(A — Jo)ht(u(t) x

t—+o00
+o0

x [ 1()p(u(&)R2(u(s)g(s,20) s = (A = o)A = o + DA (u(t)) X

t
+co

x [ #(o)p(ule) () j (€ (1€))g(6, Ao) d ds +

0] < 700+ B3 0 0a) +€) +

to

+A= ol A =20+ 11 [ #/()p(u(s))R> ((s))g(s, Ao) ds
0
X limfup R () + |A = Xol |A = Ao + 1](g*(Xo) + &) x

+o0 s
 limsup b1 (u(t) / (s)p(le)h2((s)) [ K(OP((E)R " (1(©)) deds =
to

A= Aol |A = Ao + 1]

/\(1 — )‘) (g*(AO) + 8)‘

—g<A)+M(9(A)+ &) +

Consequently,
limsup Ag*(A) < Xo(1 — Ao)(g™(Mo) +¢)-
A—0+
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Since the last inequality is valid for any Ag € (0,1) and £ > 0, we conclude that
there exists Alir{r)1+ Ag*()) and, moreover, for any A € (0,1),

5 * < - * )
,\1—1»%1+ AT (A) < Ao(1 = Xg)g*(Ao)

This inequality together with (2.14) results in (2.12).
Analogously to the above we can show that g.(\) € C((0,1)) and (2.13), (2.15)
are fulfilled. O

Lemma 2.8 Let conditions (1.2), (1.7), (1.8), (1.10), (1.11) be fulfilled and let
system (1.1) have a proper nonoscillatory solution. Then for any A € (0,1),

. . fco A (1+X)2
9N Smm{XJ“ =N 4/\(1-—)\)}’

(2.20)

where g*(A) and co are defined by (1.4)~(1.6) and (1.13).

Proof Let (ua(t),u2(t)) be a proper nonoscillatory solution of system ( 1.1). Then

by Lemma 2.1 there exists t, € R} such that (2.1) is fulfilled. Without loss of

generality we can assume that u;(t) > 0 and us(t) > 0 for ¢ > t,. On the other

hand, by Lemma 2.2 there exists #y > t, such that either (2.2) or (2.3) is satisfied.
Suppose (2.2) holds. Then, by virtue of (1.1), we have

(1;;(%) ), _ hzl(t) (h(t)ui (t) - pl t)m(t)) - ,’ii’z% (h(t)uz(a(t)) - Ul(t)) >0

for t > tq,

where 1 > tg is a sufficiently large number. Thus there exist ¢ > 0 and 7 >t
such that
u1(7(t)) = ah(r(t)) for t > 7.

Due to the last inequality, from system (1.1) we find

+oo

+oco
us(®) > f a(shua(r(s))ds > a [ gls)h(r(s))ds.

t

This contradicts (1.7). The contradiction obtained proves that inequality (2.3)
holds.

According to (2.3),

: Uy (t)

(W) < 0 for ¢t 2 ti; (221)
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If 7(t) > u(t), then, due to the fact that u;(t) is nondecreasing, we have
up(7(t)) = w1 (u(t)) for ¢ > 1o, (2.22)
and if 7(¢) < p(t), then by (2.21),

ar(0) 2 Py () for ¢ 2 (229

where t5 > t; is a sufficiently large number.
In view of (2.22) and (2.23), we have

u1(7(2)) 2 p(t)ua(p(t)) for t 21,
where the function p(t) is defined by (1.4). Therefore from system (1.1), we obtain
wh(t) < —q(B)p(B)ur(u(t)) for t > ta. (2.24)
First we show that for any A € (0,1),
. ¢ A
<= :
TAN=T+m—yn

Below we will assume that cg < +00; otherwise the validity of (2.25) is obvious.
Let A € (0,1). Multiplying both sides of inequality (2.24) by h*(u(t))/u1(u(t))
and integrating from ¢ to +co, we get

(2.25)

A o e
/ %d fq(s)p(s)hA(p(s))ds for t > ts. (2.26)

On account of (1.11) we have

th(#(S))Uz(S)d - fh)u(‘u( ))d ’LLQ(S) +

u1(u(s)) ug(p(s))
+oo
e mfetian o sty

- f A=)l (5) s + f h"(u(s))p(”(s)g_ (9)e5(0) g, -

p(s (u(s))

e (s) 1 A2 1 172
= [ 2200k (o) () 0 () — 5 ) (D (D2 s~
’u.z(t) _ 22
ui(p(t)) 40—

—hA(u(®)) N P (u(2)).-
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Thus, in view of (2.26), we find

+o0 5
[ aepte utenas < w-tuep (HepeB 4 - Xy o

t

for t > ts.
On the other hand, since uo(t) < ¢, by Lemma 2.3 in [8], we have
; h(u(t))ua(?)
limsup —~—"2-+ < ¢,
itor ua(u(d))

where cg and o(t) are defined by (1.13). Therefore, according to (2.27), for any
€ > 0 there is t* > t5 such that

+oo 2

[ ae)p(@(us)) ds < = (u(e)) (eo + ¢ + 4(3—_/\)) for t 3 "

Multiplying both sides of this inequality by p(u(t))/(¢) and integrating from t* to
t, we get

t +oo
f p(u(s))i (s) f q(€)p(E)h N (u(€)) deds <

= (CO; = 4(1/\_ ,\)) (A Mu(t)) — B (u(t?))) for t > t*.

If we multiply both sides of this inequality by A=*(u(t)) and pass to the limit as
t — +o0, then, taking into account the arbitrariness of &, we obtain

L +oco
A
limanp A= (u(2)) tf p(u(s))i/(s) f a(&)p(ORN(w(8)) de ds < % Ty
Therefore (2.25) is valid.
Now we show that for any A € (0,1),
. (1+A)?
g () < DA (2.28)

Indeed, let A € (0,1). If we multiply both sides of (2.24) by A2 (u(t))/u1(u(t))
and integrate from 5 to ¢, then we find

i

: t
JEITD) 4 < _ [ oo o) ds for t21. (229

u1(p(s))
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Analogously to the above reasoning we can obtain the following estimate

j RN g o N0 )

— ¢ for t > to,
ur(u(s)) =TT 4 =

to

where ¢ = 1T (u(t2))ua(te) /u1(p(tz)). Thus from (2.29) we have

f a(5)p(8) WM (u(s)) ds < LN *A) BMNu(t) + ¢ for t> ta.

Multiplying both sides of the last inequality by A=2(u(t))p(u(t))x'(t) and integrat-
ing from t to +o0, we get

/ B2(u(s)p((s) (o) / 2(E)ON(w(e)) de ds <

1+ i

- h h > to.
< Da- (1(2)) + ch™ (u(t)) for t >t
Now multiplying both sides of this inequality by h'~*(u(t)) and passing to the
limit as ¢ — 400, we obtain

limsup A= (u( t)) h p(s))p(u(s))i (s) f (&) p(E)RM M (u(€)) dEds <
(1+2)?
Soa-n

This, taking into account Lemma 2.4 (formula (2.7)), evidently results in (2.28).
On the other hand, (2.25) and (2.28) imply (2.20). O

The following lemma is a special case of the Schauder-Tikhonoff theorem (see,
e.g., [3, p. 227]).

Lemma 2.9 Let tg € R, V be a closed bounded convez subset of C([tp,+00); R),
and let T : V — V be a continuous mapping such that the set T(V) is equicontin-
uous on every finite subsegment of [to,+00). Then T has a fized point.
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3 Proof of the Main Results

Proof of Theorem 1.1 First we show that from (1.12) it follows (1.7). Assume
the contrary. Suppose

+o0

f h(r(£))g(t) dt < +oo. (3.1)
Since p(t)h(u(t)) < h(7(t)), (3.1) yields

+o0
f q(t)p(t)h(u(t)) dt < +oo.

Let € be an arbitrary positive number. We choose T' > 0 such that

+oo
[ as)o(o)hiuts))ds < e.
T

This together with (1.5) implies

+oo

T
0(t.2) < W) [ pu)K(s) [ a€)p@M u(e)) deds +
1

S

e R () [ ps)) i (R (uls)) ds <
T

T +co
<HW) [ p(uaNE) [ a©p©n (ue)) deds + 5.
1 s

Hence, by virtue of (1.2) and (1.10), passing to the limit as t — +o0, we find
g*(\) =limsup g(t,)) < =.
t—+00 A

In view of the arbitrariness of € we have g*(\) = 0, which contradicts (1.12). The
contradiction obtained proves that condition (1.7) is satisfied.

Now we assume that the theorem is not valid. Suppose system (1.1) has a
proper nonoscillatory solution. Then all the conditions of Lemma 2.8 are fulfilled.
Therefore inequality (2.20) holds. But this contradicts condition (1.12). The
contradiction obtained proves the validity of the theorem. O

Proof of Corollary 1.1 It suffices to note that since p(t) < t, we have co < 1 (co
is defined by (1.13)), and therefore (1.14) implies (1.12). O
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Proof of Theorem 1.2 By virtue of (2.14) (see Lemma 2.7) and (1.15) there
exists € > 0 such that for any A € (0,1),

l14+¢

g (A) 2 DaA= (3.2)

We choose A € (0,1) so that (1+ )2 <1+e¢. Then from (3.2) we have

(1+A)?

g (\) > PSSR

which results in (1.12). Therefore all the conditions of Theorem 1.1 are fulfilled.
Thus the theorem is proved. O

Proof of Theorem 1.3 According to (1.16) and (2.15) (see Lemma 2.7), we have
1
i — * > | - ¥ —
Jlim (1-X)g () > lim (1= N)g.(3) > 7

Therefore all the conditions of Theorem 1.2 are satisfied. Thus the theorem is
proved. O

To prove Corollaries 1.2 and 1.3, it suffices to note that the fulfilment of each
of conditions (1.17) and (1.18) guarantees the fulfilment of condition (1.16).

Proof of Theorem 1.4 According to (1.10) and (1.19) it is clear that

lim sup A~(¢) (1+ j p(s) qu(g)hA(T(g)) d¢ ds) 25 L

t—+400
0 a(s)

Thus there exists tg € R4 such that

t “+oc
1+ [ p(s) ] Q)R (7(€)) de ds < B (¢) for t > to. (3.3)
to a(s)

Let V be the set of all v € C([o(7(to)), +0); R) satisfying the conditions

v(t) =1 for t € [o(T(to)),t0] and 1< w(t) <A t) for ¢t > tg.%) (3.4)

3)Here t; is chosen so large that h(tp) > 1.
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Define
t

+oo
4)
T(v)(t) = 1 +t0fp(8)a([) g(§)v(r(€)) déds for t > ¢,
1 for t € [o(7(to)), o)

On account of (3.3) and (3.4) it is evident that T'(V) C V. Moreover, the set (V)
is equicontinuous on every finite subsegment of [o(7(¢p)), +0). Since V is closed
and convex, by Lemma 2.9 there exists vp € V such that vy = T'(vp). According to
(3.5) it is obvious that the vector function (u;(t),u2(t)), the components of which
are defined by the equalities

(3.5)

i ~+co +oco
w@) =1+ [ o) [ a©u(r(©) deds, w(®)= [ alshvolr(s))ds,
to o(s) i

is a proper nonoscillatory solution of system (1.1). O
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